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Abstract

In this paper, a new method for coalescing particles in PIC codes is proposed. This coalescing process conserves the

particle and mesh charge and current densities as well, and also the particle energy. Particular attention is devoted to the

derivation of a method as general as possible, to be easily extended to other problems. Numerical examples are shown

to illustrate the efficiency of the method.

� 2003 Published by Elsevier Science B.V.
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1. Introduction

The numerical simulation of charged particle beams or plasma physics phenomena requires methods of

solution for the time-dependent Vlasov equation (possibly with source terms), or more generally for an

equation modelling the evolution of a plasma, coupled with the Maxwell system, or any kind of equations
approximating it, as the Poisson equation, the Darwin equation, etc. In this framework, the particle-in-cell

method (PIC) is a widely used method, where the distribution function is approximated in the phase space

by a combination of delta functions, hence defining the macro-particles. However an intrinsec constraint on

the use of PIC codes is the need to control the number and the distribution of the macro-particles.

Why controlling particles in PIC codes?

1. To limit to a ‘‘reasonable’’ level the total number of particles when dealing with source terms: ioniza-

tion, collisions, re-emission from the boundaries, etc.

2. To enforce a quasi-constant number of particles per cell, for accuracy purpose, when running a PIC
code.

• on a non-uniform mesh or even on an adaptative mesh, required by the modelling of phenomena

with large variations of length scales;

• on a regular mesh when the physics modelled induces large spatial variations in the particle density.
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3. To reduce the numerical noise by regularly reorganizing the particle distribution.

In order to preserve the physics of the problem, this control has to fulfil some constraints, such as the mass,

momentum or energy conservation, or the positivity of the mass and of the energy. In a particle-in-cell

approach, both of the particle and cell (or mesh) quantities are concerned by these constraints as well.
Several approaches have been proposed to cope with this problem.

Illner and Rjasanov [3] were concerned with the numerical solution of the spatially homogeneous

Boltzmann equation in the velocity space (without space mesh). They proposed an algorithm which consists

in reducing N particles into two particles with which weight and velocity are calculated so that the particle

mass, momentum, and energy are exactly conserved. An adaptation of this approach is developed in [6] to

solve a Vlasov–Poisson model with ionizations terms.

Lapenta and Brackbill, in a first paper [4], developed a one-dimensional method which coalesces two

particles into one, or which splits one particle into two, preserving either the particle mass and momentum
or the energy of each component. It can be extended to two or three-dimensional cartesian grids. The use of

the spline basis functions allows the conservation of the charge density defined on the grid.

In a following paper [5], the same authors, concerned with fluid simulations, construct another

coalescence process which preserves primitive variables on the mesh, but they are not interested in

conserving the particle quantities. They coalesce N particles into L with a principle of maximum

uniformity, but the conservation on the mesh is not exact in order to enforce the positivity of some of

the variables.

In this paper, we propose a new method for coalescing particles in PIC codes. From this process, we
deduce a first algorithm of coalescence that conserves – up to an approximation of the same order as a

quadrature formula to be chosen – the particle and cell charge and current densities as well, and also the

particle energy. We then deduce a second algorithm of coalescence for which the conservations are exact. In

both of the cases, the positivity of the mass and of the energy is preserved. Section 2 is devoted to the

presentation of the general framework of PIC codes. The principle of a coalescence process is recalled in

Section 3, whereas the new coalescence method is introduced in Section 4. Particular attention is devoted to

the derivation of a method exposed in a way general enough to be easily extended to other problems. In

Section 5, some improvements of our coalescence scheme are described, to address the problems that
appear when it is impossible to achieve coalescence. In particular, it leads to introduce a modified algorithm

that is exact with regard to the conservations. Some criteria to determine well-adapted quadrature for-

mulae, depending on the applications, and examples are proposed in Section 6, also illustrated by pre-

liminary numerical results. The particular case of the energy conservation is investigated and is treated in

Section 7. The resulting global algorithms are supported by numerical examples given in Section 8. Finally,

a conclusion is drawn in Section 9.

2. General framework

We consider one or several populations of charged particles (ions, electrons, etc.) moving in a two or

three-dimensional bounded domain X. The motion of these charged particles can be described in terms of
particle distribution functions by the generalized Vlasov equation,

ofa

ot
þ v � rxfa þ

qa

ma
ðEðx; tÞ þ v� Bðx; tÞÞ � rvfa ¼ S; ð1Þ

where faðx; v; tÞ denotes the distribution functions. The variables x and v are, respectively, the position and
the velocity, ma and qa denote the mass and the electric charge for each species of particle a, and S is a
source term (ionization, collisions, etc.). For the sake of simplicity, we shall consider in the following only
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one species of charged particles (with an electric charge q, a mass m, and a distribution function f ).
However, this work can easily be applied to several species of particles.

The electromagnetic fields Eðx; tÞ and Bðx; tÞ are solution of the Maxwell system

oE

ot
� c2 curlB ¼ � 1

e0
J; ð2Þ

oB

ot
þ curlE ¼ 0; ð3Þ

divE ¼ 1

e0
q; ð4Þ

divB ¼ 0; ð5Þ

or of any kind of equations approximating the Maxwell system ((quasi-)electro or magnetostatics, Darwin,

etc.).

The charge and current densities q and J are obtained from the solution f of the Vlasov equation
according to

q ¼ q
Z
R3
f ðx; v; tÞdv; J ¼ q

Z
R3
vf ðx; v; tÞdv: ð6Þ

The Vlasov equation is numerically solved by means of a particle method: the distribution function

f ð�; �; tÞ is approximated at any time t, by a linear combination of delta functions in the phase space

f ðx; v; tÞ ’ ~ff ðx; v; tÞ ¼
XN
k¼1

wkdðx� xkðtÞÞdðv� vkðtÞÞ; ð7Þ

where each term of the sum can be identified with a macro-particle, characterized by its weight wk, its

position xk and its velocity vk, and N is the number of macro-particles. By introducing this particle ap-

proximation of f in the expression (6), we obtain a particle approximation of the charge and current
densities as follows:

~qq ¼ q
Z
R3

~ff ðx; v; tÞdv ¼ q
XN
k¼1

wk dðx� xkðtÞÞ; ð8Þ

~JJ ¼ q
Z
R3
v ~ff ðx; v; tÞdv ¼ q

XN
k¼1

wkvk dðx� xkðtÞÞ; ð9Þ

which is a representation of the charge density q and the current density J in terms of delta functions that

will be called particle variables in the sequel of this paper.

However the resolution of (approximations of) Maxwell�s equations is performed by means of a grid
method, namely a finite difference, a finite volume or a finite element method. This requires to define
values of q and J at the vertices of the mesh used for the ‘‘grid’’ computation of the electromagnetic

fields E;B. Let us denote by T a mesh that approximates the computational domain X. We also in-
troduce faig the set of vertices ofT and ki; 16 i6 n the set of the shape functions of dimension n, related
to the field approximation. We define the values of the charge and current densities at the nodes of the

mesh by:
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qi ¼
R

X ~qqðxÞkiðxÞdxR
X kiðxÞdx

¼ q
PN

k¼1 wkkiðxkÞR
X kiðxÞdx

; ð10Þ

Ji;¼
R

X
~JJðxÞkiðxÞdxR
X kiðxÞdx

¼ q
PN

k¼1 wkvkkiðxkÞR
X kiðxÞdx

: ð11Þ

Since
P

i ki ¼ 1, this projection procedure (the ‘‘assignment’’) preserves the total charge and the total
current of particles.

3. Principle of a local coalescence process

As any other method allowing to control the number of particles, a coalescence process can be global or

local.
A global approach consists in replacing the set of all the particles in a domain by another set containing a

different number of particles, without changing the grid quantities one wants to conserve.

In a local approach, the previous procedure is applied cell by cell. One can choose in which element of

the mesh the particles are replaced, while preserving the local mesh and/or particle quantities. Following the

same arguments as in [5], we have developed a local coalescence method.

Hence, we want to replace the set of N particles by a set of N 0 particles. In a coalescence process, N 0 < N .
In each element T of the meshT, the set of NT particles ðwk; xk; vkÞk¼1;NT

are replaced by a set of N 0
T particles

ðw0
l; x

0
l; v

0
lÞl¼1;N 0

T
. In order to preserve the main features of the distribution function, the coalescence process

must meet the particle conditions:

• the mass conservation

XN 0
T

l¼1
w0

l ¼
XNT

k¼1
wk; ð12Þ

• the momentum conservation

XN 0
T

l¼1
w0

lv
0
l ¼

XNT

k¼1
wkvk; ð13Þ

• and if it is possible, the energy conservation

XN 0
T

l¼1
w0

ljv0lj
2 ¼

XNT

k¼1
wkjvkj2; ð14Þ

with the constraint

w0
l > 0; l ¼ 1; . . . ;N 0

T : ð15Þ

Moreover, the coalescence process must not modify the electromagnetic field calculations. The values of the

charge and current densities defined on the mesh (that will be called mesh variables in the sequel of this

paper) must be unchanged. This implies the following mesh conditions deduced from (10) and (11)

XN 0
T

l¼1
w0

lk
T
i ðx0lÞ ¼

XNT

k¼1
wkk

T
i ðxkÞ; ð16Þ
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XN 0
T

l¼1
w0

lv
0
lk

T
i ðx0lÞ ¼

XNT

k¼1
wkvkk

T
i ðxkÞ; ð17Þ

for each kT
i , where kT

i denotes the basis functions ki such that suppðkiÞ \ T 6¼ ;.

4. The new coalescence process

As mentioned in the previous section, the new coalescence process that we developed is local. We call it
‘‘process’’ in the sense that it is a ‘‘way of constructing’’ methods for controlling the number of particles. In

this paper, we are interested in coalescence methods, that is, when the number of particles in a cell is too

large, they are replaced by a lower number of particles while preserving the particle charge, current and

energy, and their contributions to the mesh charge and current.

The principle of the method presented hereafter is also general, since it can be applied to two-dimen-

sional triangle or quadrilateral meshes as well as three-dimensional tetrahedral or hexahedral meshes.

Moreover, it can be used with spline basis function, even if special developments are required for using high

order splines.
In this paper, the method we present was developed to be implemented in a two-dimensional PIC code,

where the field solver uses a P 1 finite element method on an unstructured mesh of triangles [1]. Two
examples of algorithms deduced from this method will be exposed.

4.1. Charge and current density conservation

The following sections are devoted to the definition of a first coalescence algorithm that conserves the

charge and current density. The energy conservation will be addressed in a forthcoming section.

Let us denote by T a chosen fixed triangle of the mesh, and by ki; i ¼ 1; 2; 3 the linear basis functions
associated to the nodes of the triangle T (by dropping now the T ). As already stated we want to conserve the

mesh variables and the particle variables as well. For doing that, the following property will be helpful:

Proposition 4.1. We assume that
P3

i¼1 kiðxÞ ¼ 1. We then have
• If

PN 0

l¼1 w
0
lkiðx0lÞ ¼

PN
k¼1 wkkiðxkÞ; i ¼ 1; 2; 3, then

PN 0

l¼1 w
0
l ¼

PN
k¼1 wk:

• If
PN 0

l¼1 w
0
lv

0
lkiðx0lÞ ¼

PN
k¼1 wkvkkiðxkÞ; i ¼ 1; 2; 3, then

PN 0

l¼1 w
0
lv

0
l ¼

PN
k¼1 wkvk:

In others words, this property means that if the local coalescence method conserves the mesh charge and
current densities, it conserves the corresponding particle variables. Let us thus consider the mesh quantities. In
order to construct the coalescence process, one of the principal elements of our method is the use of the fol-
lowing remark:

Remark 4.1. Following [7], a particle approximation of a function can be related to a numerical quadrature

formula.

Indeed, let gðxÞ be a given function, and consider a N -points quadrature formula on T as follows:Z
T
gðxÞdx ’

XN
k¼1

akgðnkÞ; ð18Þ

where nk and ak denote the quadrature points and weights. Using (18), we haveZ
T
f ðxÞwðxÞdx ’

XN
k¼1

akf ðnkÞwðnkÞ 8w a regular test function;
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which defines a ‘‘measure’’ approximation (see [7] for a precise definition) of f as

f ðxÞ ’
XN
k¼1

wkdðx� nkÞ;

where the weights wk are given by

wk ¼ akf ðnkÞ:

4.2. Construction of the position and the weight of the new particles

The construction of the position and weight of the new particles can now be described in three steps:

1. Find a function g defined on T that satisfies:Z
T
gðxÞkiðxÞdx ¼

XN
k¼1

wkkiðxkÞ¼
defQi; i ¼ 1; 2; 3; ð19Þ

where N, wk and xk are the number, the weights and the positions of the particles to be replaced.

2. Choose on the triangle an accurate N 0-points quadrature formula characterized by ðx0l; alÞ; l ¼
1; . . . ;N 0, its quadrature points and weights. N 0 and x0l will be the number and the positions of the
new particles, defined in the triangle T .

3. Define the weights of the new particles by applying the quadrature formula, namelyZ
T
gðxÞkiðxÞdx ’

XN 0

l¼1
algðx0lÞkiðx0lÞ; i ¼ 1; 2; 3;

so we have

w0
l ¼ algðx0lÞ:

With this choice, the mesh charge density conservation property is ensured, up to a precision level de-
pending on the quadrature formula, that is

XN 0

l¼1
w0

lkiðx0lÞ ’
XN
k¼1

wkkiðxkÞ; i ¼ 1; 2; 3;

and consequently, by using Proposition 4.1, the particle charge density is also conserved, with the same

precision.

Remark 4.2. It can be easily proved that this approximation is of the same order as the quadrature formula
approximation applied to

R
T gðxÞkiðxÞdx. In a forthcoming section (see Section 5), a modified approach

that leads to an exact method of coalescence will be also introduced.

It remains now to choose a well-adapted function gðxÞ. Obviously, there is several different possible
choices. As gðxÞ must satisfy three conditions defined by (19), it is natural to introduce three unknowns in
its definition, so we choose

gðxÞ ¼
X3
j¼1

gjkjðxÞ;
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where the three coefficients gj are the solutions of the 3� 3 linear systemX3
j¼1

gj

Z
T

kjðxÞkiðxÞdx ¼ Qi; i ¼ 1; 2; 3 ð20Þ

) gj ¼
3

jT j 3Qj

�
�
X
i6¼j

Qi

!
; j ¼ 1; 2; 3; ð21Þ

where jT j denotes the area of the triangle T , and

w0
l ¼ al

X3
j¼1

gjkjðx0lÞ: ð22Þ

This solution does not necessarily ensure the positivity of the particle weights w0
l, which is a condition that

must be fulfiled. To ensure this positivity, a sufficient condition consists in choosing a quadrature formula
with positive weights (al > 0 8l) and to make sure that gðxÞ > 0 8x 2 T . This yields the following positivity
condition:

3Qj �
X
i 6¼j

Qi > 0; j ¼ 1; 2; 3: ð23Þ

It can exist some cases where the positivity conditions are not fulfiled. Indeed, the quantities ðQjÞj¼1;2;3
depend on the initial repartition of the particles in the triangle before coalescence. Typical situations which

do not meet these criteria are depicted on Fig. 1, where particles with the same weights are considered in a

triangle with a local numerotation of its nodes.

In the first case (Fig. 1(a)), most of the particles have clustered together near the node 3, we then have
Q3 � Q1 and Q3 � Q2. In the second illustration (see Fig. 1(b)), the particles have clustered together near
the edge (2-3). In such a situation, Q1 � Q2 and Q1 � Q3. In both situations, the relations (23) are violated
which prevents the coalescence from being performed.

Fig. 1. Two cases which do not meet the positivity conditions.
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In order to enlarge the range of application of the coalescence, a modification of this method will be

proposed (see Section 5) that allows us to improve the process by relaxing the positivity conditions

(23).

4.3. Construction of the velocities of the new particles

The velocities of the new particles are constructed component by component in the same way as the

positions and the weights. This construction can be divided into three steps. For each component n:
1. Find a function hn defined on the triangle T which satisfiesZ

T
hnðxÞkiðxÞdx ¼

XN
k¼1

wkv
n
kkiðxkÞ¼

defIn
i ; i ¼ 1; 2; 3: ð24Þ

2. Use the same quadrature formula as the one used for the charge conservation.

3. Define the velocity of the new particles with the quadrature formulaZ
T
hnðxÞkiðxÞdx ’

XN 0

l¼1
alhnðx0lÞkiðx0lÞ; i ¼ 1; 2; 3:

So, using the weight definition established when dealing with the charge density conservation

w0
l ¼ algðx0lÞ;

we define

v0nl ¼ hnðx0lÞ
gðx0lÞ

; ð25Þ

which leads to

XN 0

l¼1
w0

lv
0n
l kiðx0lÞ ’

XN
k¼1

wkv
n
kkiðxkÞ; i ¼ 1; 2; 3;

i.e., the mesh current density is conserved, up to an approximation of the same order as the quadrature

formula we will choose. Using again Proposition 4.1, the particle current density is conserved as well,
with the same precision.

Following the same arguments as in the previous case, we choose for the function hn:

hnðxÞ ¼
X3
j¼1

hn
jkjðxÞ:

By inverting this system, one obtains

hn
j ¼

3

jT j 3I
n
j

�
�
X
i6¼j

In
i

!
; j ¼ 1; 2; 3: ð26Þ

Remark that, in this case, there is no sign condition for the coefficients hn
j .

Remark 4.3. At first sight, it would seem in the new particle velocities (25), that the denominator

gðx0lÞ¼
defP3

j¼1 gjkjðx0lÞ may be quite small, which could lead to create particles with very large velocities:

F. Assous et al. / Journal of Computational Physics 187 (2003) 550–571 557



Consider for instance a new particle created near a cell vertex, then all the kj except one would be small.

If the gj corresponding to the finite kj is also tiny, then the sum in the denominator can be also small.

Moreover, there is no a priori reason why the numerator must also be small.

In practice, however, this situation does not occur by choosing quadrature formulae with integration

points ‘‘not too close’’ to the cell vertices. In particular, ‘‘good’’ quadrature formulae are such that all their

integration points are different from the mesh vertices (see examples in Section 6).

To conclude this section, let us summarize the main features of the new coalescence method

• N particles in the current triangle are replaced by N 0 particles, due to the choice of the quadrature for-

mula, located in the same triangle.

• The locations of the new particles are defined as the integration points of the chosen quadrature formula.

• The weights of the new particles are defined by

w0
l ¼ al

X3
j¼1

gjkjðx0lÞ

• and the velocity of the new particles are

v0nl ¼
P3

j¼1 h
n
jkjðx0lÞP3

j¼1 gjkjðx0lÞ
;

where

gj ¼
3

jT j 3Qj

�
�
X
i6¼j

Qi

!
; j ¼ 1; 2; 3 ð27Þ

and

hn
j ¼

3

jT j 3Ij
�

�
X
i6¼j

Ii

!
; j ¼ 1; 2; 3: ð28Þ

The algorithm of the coalescence process is then, for every triangle T :
If N > Nmax, the maximum number of particles per triangle

computation of gj
if gj > 0; j ¼ 1; 2; 3
coalescence

endif

endif

5. How to enhance the coalescence process

5.1. Relaxing the positivity condition (23)

The impossibility to achieve coalescence with positive weights when the Qj are strongly non-uniform (see
(23)) is mainly caused by the particle created on the ‘‘central points’’ of the used quadrature formula.

Indeed, their contributions to the three nodes of the triangle T are almost equal which prevents the

quantities on these nodes from being very different. An obvious remedy consists in choosing other functions
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g and hn, which will eliminate these central particles. Obviously, there are a lot of possible choices. We

describe now the one we have chosen, following with these new functions exactly the same methodology as

developed in Section 4.2.

Assume first that finer triangles tj; 16 j6 4 are defined by dividing each triangle T into four triangles of
equal surface, locally numbered as shown in Fig. 2. We then define the functions lj; j ¼ 1; 2; 3, the support
of which being restricted to each triangle tj such that

ljðxÞ ¼ 2kjðxÞ � 1; x 2 tj; ð29Þ

ljðxÞ ¼ 0; x 2 ti; i 6¼ j; ð30Þ

where kjðxÞ are the shape functions previously introduced (see for instance (10) and (11)). The function g
that must satisfy the three conditions (19) is now defined as

gðxÞ ¼
X3
j¼1

gjljðxÞ

and therefore the coefficients gj are solutions of the linear systemX3
j¼1

gj

Z
T

ljðxÞkiðxÞdx ¼ Qi; i ¼ 1; 2; 3; ð31Þ

from which one can deduce the new positivity conditions as

7Qj �
X
i 6¼j

Qi > 0; j ¼ 1; 2; 3;

which are far less restrictive than the previous ones (23).

In this modified coalescence process, the initial N particles per triangle are replaced with N 00 particles per

triangle, and the corresponding weights are thus equal to

w0
l ¼ al

XN 00

j¼1
gjljðx0lÞ:

Actually, when we use a N 0-points quadrature formula, N 00 of these points (see Fig. 2) are located outside the

central sub-triangle t4. Because we have

suppðljÞ \ t4 ¼ ;;

this choice of g eliminates the N 0 � N 00 central particles.

Fig. 2. Definition of the finer triangles tj.
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For the velocities, we also use the same lj and we set

hnðxÞ ¼
X3
j¼1

hn
jljðxÞ:

The straight use of this method has, however, shown results with a quite poor accuracy on the conservation
of the mesh variables (and also on the particle variables), with a relative error of ’ 10�2, due to the fact that
(see Remark 4.2) the integralZ

T
ljðxÞkiðxÞdx 8i; j ð32Þ

that appears in Eq. (31) is poorly approximated by

XN 00

l¼1
alljðx0lÞkiðx0lÞ 8i; j; ð33Þ

because the function ljðsÞkiðsÞ, for s 2 T , is far from a polynomial. The forthcoming section is devoted to a
solution of this difficulty.

5.2. An exact coalescence process

A remedy to overcome this poor approximation is now to replace the gj by a new set of coefficients cj,
which will be obtained by using consistently the approximation (33) rather than the exact value of (32).

More precisely, we define the coefficients cj as the solutions of the systemX
j

cj
XN 00

l¼1
alljðx0lÞkiðx0lÞ ¼ Qi; i ¼ 1; 2; 3; ð34Þ

and we choose the weights as

w0
l ¼ al

X3
j¼1

cjljðx0lÞ; l ¼ 1; 2; 3: ð35Þ

With this choice of coefficients, we have made better than just improve the approximation. Indeed, one can

prove the following property

Property 5.1. When using the function gðxÞ ¼
P3

j¼1 cjljðxÞ, with the cj solving the system (34), the coales-
cence process conserves the mesh charge exactly.

Proof 5.1. Using (35), one has thatX
l

w0
lkiðx0lÞ ¼

X
l

al

X
j

cjljðx0lÞkiðx0lÞ ¼
X
j

cj
X
l

alljðx0lÞkiðx0lÞ;

which, by construction equal to Qi, impliesX
l

w0
lkiðx0lÞ ¼

X
k

wkkiðxkÞ: �
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Remark 5.1. This method is illustrated here with the special case treated in Section 5.1. It is, however, a

general procedure that consists in replacing the system of the form (20) by a system similar to (34). We

apply also this technique to the conservation of the momentum. Thus we have defined an alternate coa-

lescence process which conserves exactly the mesh and the particle mass and momentum.

6. Quadrature formulae and applications

6.1. Choice of quadrature formulae

The choice of a quadrature formula depends strongly on the physical applications one wants to model.

Hence, if we are concerned by kinetic PIC of plasma physics, often with a lot of particles per cell (tens,

hundreds, or even thousands), we have to use a quadrature formula with also a ‘‘sufficiently large’’ number
of integration points per cell (some tens), in order to exchange a set of particles for another that is

‘‘comparable’’. Otherwise the alteration of the particle distribution function, that plays an important role in

kinetic PIC (see [5]), would lead to a significative error on the results.

On the contrary, in fluid applications or in most of kinetic modellings of particle beams, where the

number of particles per cell is often around a few tens, a coalescence method that reduces the number of

particles in a cell to some units can be sufficient.

Moreover, in all the cases, the quadrature formula has to fulfil the following requirements:

1. The weights have to be positive, because of the particle approximation.
2. The order of approximation has to be sufficient, because it is directly related to the precision of the

first method of coalescence (see Remark 4.2), but not for the exact method of Section 5.

3. The integration points must be different from the mesh vertices, as explained in Remark 4.3.

Trying to take into account all these parameters, the approach we propose consists in using ‘‘family’’ of

quadrature methods, in which the number of integration points is a parameter. One can then choose the

number of particles per cell after coalescence one wants.

The first illustration we used in the sequel of this paper is a 7-points Gauss–Hammer quadrature formula

(see Fig. 3). It is a sixth-order quadrature formula with positive weights, and the quadrature is therefore
exact for

R
T kjðxÞkiðxÞdx (see for instance [8]). Moreover, these 7 points are located in the triangle, which

allows the coalescence to remain local. For more details on the numerical values of the weights and of the

positions of these points, the reader can refer (for instance) to [8]. This quadrature formula is obviously well

designed for fluid applications.

For kinetic PIC situations, among the other possible choices, we propose to use the Gauss–Radau

formula, as depicted in Fig. 4, even if the accuracy order is not optimal with regards to the number of

integration points. This number of integration points (9, 16, 25, . . .) – that is the number of particles per cell
after coalescence – can be chosen as large as we want, while the weights are always positive, that allows to
treat easily kinetic PIC problems. Finally, remark that the choice of any admissible quadrature formula can

be a way to control a priori the number of particles after coalescence.

Fig. 3. Location of the 7 points in the Gauss–Hammer quadrature formula.
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6.2. Numerical test for the charge and current density conservation

As an illustration, we present some results obtained by using the algorithm constructed from the 7-points

Gauss-Hammer formula. We consider a mesh made up with 512 triangles. On every triangle, 30 particles

are created. Their positions are chosen at random uniformly on the triangle and their velocities according to

a Maxwellian distribution.

The results after coalescence show a relative error on the mesh and on the particle charge and current

densities conservation of 10�8 for a single precision computation. The number of particles before coales-

cence is 15,360, the number after is 4389 and there are 35 triangles where the coalescence is forbidden.

Remark 6.1. Following Remark 4.2, the accuracy of this process is only related to the number of digits

retained to define the positions and the coefficients of the quadrature formula, because the integration of

the functions kikj is exact with the 7-points Gauss–Hammer quadrature formula.

To improve the efficiency of the coalescence, we use now, on the same example as previously, the

modified coalescence algorithm, that is with only three particles when the tests associated to the seven

particles fail. In this case, the positivity condition (23) is relaxed, and we obtain using the exact scheme of
Section 5.2

CpQi �
X
i6¼j

Qj > 0; i ¼ 1; 2; 3;

where the constant Cp ’ 8:87. We obtain the following conclusions: The number of particles before coa-
lescence is 15,360, the number after is 3444 and there is no triangle where the coalescence is impossible.

Remark 6.2. Because three particles in each element of a mesh is not sufficient to ensure a non-noisy particle
method, even in a fluid application, this improvement is used only if the general approach fails. As shown

by the numerical results, it occurs in only 35 triangles compared to 478, that is less than 7%, so that the

precision of the particle method is not significantly worse when using this technique for relaxing the

positivity condition.

7. Energy conservation

At first sight, it could appear not necessary to ensure the conservation of the particle energy, this

quantity being not required in the global coupled model. However, the following numerical test (see Fig. 5)

shows that, without particle energy conservation, the time variation of the computed electric potential in an

electron beam ionizing a background gas can be very noisy. More generally, it is well known that con-

serving the particle energy is of prime importance when modelling plasma physics phenomena. In these

conditions, we have now to investigate the energy conservation.

Fig. 4. Location of the integration points in the 9-points Gauss–Radau quadrature formula.
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We first consider �, the particle energy before coalescence, defined by

� ¼
XN
k¼1

wkjvkj2;

and also introduce �0 the particle energy after coalescence, as

�0 ¼
XN 0

l¼1
w0

ljv0lj
2
:

The coalescence processes that we have constructed for q and J do not satisfy a priori the particle energy

conservation, that is

� ¼ �0:

To remedy this problem, two approaches have been tried:
1. introduce a correction in the q andJ coalescence scheme in order to achieve the energy conservation;

2. construct a global new coalescence scheme which satisfies the energy conservation.

The following two sections are devoted to the presentation of these two approaches.

7.1. An energy correction

This correction is inspired by the Illner and Rjasanov [3] method of coalescence.

Let us consider one of the particles obtained after a coalescence process, characterized by ðw0
l0
; x0l0 ; v

0
l0
Þ.

The principle of this approach consists in splitting it into two particles ðw0
l1
; x0l1 ; v

0
l1
Þ and ðw0

l2
; x0l2 ; v

0
l2
Þ, with

the same positions, and with their weights and velocities chosen in such a way that the initial mass and

momentum are conserved. Moreover, the lack of energy due to the coalescence process, i.e., D�¼def�� �0,
must be compensated by a well adapted choice of the characteristics of the new particles. These conditions
can be summarized with the following equations (dropping the 0 and the l):

Fig. 5. Computed electric potential with and without particle energy conservation.
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x1 ¼ x2 ¼ x0; ð36Þ

w1 þ w2 ¼ w0; ð37Þ

w1v1 þ w2v2 ¼ w0v0; ð38Þ

w1jv1j2 þ w2jv2j2 ¼ w0jv0j2 þ D�: ð39Þ

This system obviously is not necessarily well posed, the existence and uniqueness of solution being not

ensured. Following [3], we can fix several degrees of freedom by choosing

w1 ¼ w2 ¼
w0
2
; ð40Þ

v1 ¼ v0 � bu; v2 ¼ v0 þ bu; ð41Þ

where b is a parameter to determine and u 2 S2, the unit sphere of R2. With (40) and (41), the mass and
momentum conservations (37) and (38) are satisfied. Now if and only if the variation of the energy is

positive, i.e.,

D� > 0; ð42Þ

the energy conservation relation is fulfiled by taking

b ¼

ffiffiffiffiffiffi
D�
w0

s

as the solution of (39).

Remark 7.1. The unit vector u being an additional degree of freedom, we choose arbitrarily to take

u ¼ �vv=j�vvj, with �vv¼def
P

l w
0
lv

0
l=
P

l w
0
l.

It remains now to choose which particle to split. In order to obtain resulting particles with velocities not

too different from the main velocity, we have to minimize b and therefore, we split the particle with the
maximum weight w0. When dealing with a coalescing process with few particles after coalescence, we can
split all of them and then make use of the energy conservation scheme to increase the number of particles

after coalescence.

A drawback of this method is the positivity condition (42) on the sign of the energy variation that can be

easily tested but never be controlled. Another drawback is that, if D� is ‘‘too important’’, the velocities of
the split particles may be largely out of the range of the velocities of the other particles, leading to a particle

distribution function very different from the initial one. For these reasons, it is worthwhile to study now an

alternate method, that is described as follows.

7.2. A coalescence scheme satisfying the energy conservation

The principle of this approach is no more to correct the energy after performing the coalescence, but to

propose a modification of the global coalescence scheme, that yields velocities after coalescence verifying the
particle conservation of the energy, that is
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X
l

w0
ljv0lj

2 ¼
X
k

wkjvkj2;

while preserving the mesh conservation of the momentumX
l

w0
lv

0
lkiðx0lÞ ¼

X
k

wkvkkiðxkÞ;

the mesh conservation of the mass being unchanged. For doing this, we start from the conservative coa-

lescence scheme described in Section 5.2. We add in the definition of the velocities a new degree of freedom

b that allows us to enforce the energy conservation. Hence, using the same notations as in Section 4.3, we
define for each component n

hnðxÞ ¼
X3
j¼1

hn
jkjðxÞ þ bunmðxÞ;

where un is the nth component of an arbitrary unit vector u, which can be chosen as in Remark 7.1, and mðxÞ
is a function locally defined on every element T . Then in the same spirit as (34), the momentum conser-

vation (for the nth component) reads

XN 0

l¼1
al

X3
j¼1

hn
jkjðx0lÞ

 
þ bunmðx0lÞ

�
kiðx0lÞ ¼ In

i ; i ¼ 1; 2; 3: ð43Þ

The unknowns hn
j and b can be determined by supplementing the system (43) with a second degree equation

for the energy conservation. An easy way to simplify this rather complex system is to introduce a pointwise

definition of the function m such as

XN 0

l¼1
almðx0lÞkiðx0lÞ ¼ 0; i ¼ 1; 2; 3: ð44Þ

Doing this, the equations of the momentum and energy conservation are no more coupled, so that the hn
j

are the solutions of a system similar to (34). With this choice, the velocities of the particles after coalescence
can be defined as (see Section 4.3)

fv0nlv0nl ¼ al

P3

j¼1 h
n
jkjðx0lÞ þ bunmðx0lÞ

w0
l

that can be written as follows:fv0nlv0nl ¼ v0nl þ bun
al

w0
l

mðx0lÞ: ð45Þ

Remark 7.2. With (45), this method can be viewed as a perturbation of the initial coalescence process in

which the velocities of the new particles are corrected by an additive term in order to conserve the energy.

The energy conservation equation

XN 0

l¼1
w0

l

X
n

fv0nlv0nl� �2
¼
XN
k¼1

wk

X
n

vn
k

� �2
¼ �;
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together with (45), allows us to characterize b as a solution of the second degree equation

XN 0

l¼1

a2l
w0

l

mðx0lÞ
2b2 þ

X
n

XN 0

l¼1
v0nl almðx0lÞb � D� ¼ 0; ð46Þ

where D� is the initial energy conservation error, as defined in Section 7.1. The conservation of the energy is
therefore enforced as the discriminant of (46) db is non-negative, which is a condition weaker than the

condition D� > 0, required by the first energy conservation scheme.
It remains now to construct mðx0lÞ satisfying the conditions (44), that is nothing but orthogonality

conditions (in a space of dimension N 0) between the vector m of components mðx0lÞ, and each of the three
vectors Ki of components alkiðx0lÞ. It is achieved through a Gram–Schmidt algorithm.

Remark 7.3. This method of energy conservation can obviously be applied in a similar way when the
‘‘central particles’’ are eliminated.

In practice, this second method of energy conservation should be preferred, first because of the larger

domain of application, but more importantly since it far less modifies the initial particle distribution, as it
will be shown in the following section. Remark also that, in both of the methods, no coalescence is per-

formed when the conditions (D� > 0 or db P 0) are not fulfiled, even if in practice, these situations almost

never occur. Nevertheless, this limitation of the method allows us to prevent in all cases some numerical

heating or cooling of the system.

It remains now to evaluate the performances and the precision of this coalescence scheme in some ex-

amples of numerical applications. This is the aim of the last section.

8. Numerical results

We define a test inspired from Forrester in [2, Chapter 3, p. 46]. We consider a plane diode and pre-

scribed fixed values of the potential on the electrodes, i.e., V ¼ 0 on the anode and V ¼ �Va on the cathode.
The diode is filled with ions which are generated at a uniform rate per unit volume. Following Forrester, we

consider the ‘‘critical rate’’ which ensures that the electric field E vanishes on the anode.

This one-dimensional situation is treated as a two-dimensional test case. At each time-step, macro-

particle are created in every element of the mesh, in order to take into account the generation process. The
mesh is made up with 1000 triangles and we run the computation during 1000 time-steps which is enough to

obtain a stationary solution.

In a first case, we model the generation of ions by creating at each time-step one macro-particle in every

element of the mesh. We then compare the results obtained without coalescence and those with a 7-points

coalescence scheme. The coalescence is performed in a mesh element as soon as the number of particles

becomes greater than 20. We obtain:

• number of particles without coalescence: 35,588;

• number of particles with coalescence: 14,715;
• number of situations where the coalescence is impossible, due to the weights positivity constraint: 0;

• number of situations where the coalescence is impossible, due to the energy conservation constraint:

0.4% of the total number of coalescence attempts.

Fig. 6 represents the ion current intensities through the cathode (without and with coalescence) and Fig. 7

the respective charge density profiles between the electrodes. In both cases the mean values of these

quantities are the same with and without coalescence, but the results are noisier in the first case. Two

reasons explain that the coalescence induces noise:
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1. the noise increases when the number of particles decreases,

2. the weights of the whole set of particles are less uniform after several coalescence steps than without

coalescence.

In order to determine the relative parts of both reasons, we perform a test without coalescence, but with

half of the particles (more precisely 17,565) that is comparable to the with-coalescing simulation. Fig. 8

shows the density and the current profiles in this case. We can conclude that the non-uniformity of the

particle weights is the major cause of the noise induced by the coalescence.

This noise increase is, however, without any consequence on the field calculations, as it is shown in Fig.
9, where we note that the potential distribution is exactly the same with (Fig. 9(a)) or without (Fig. 9(b))

coalescence.

We can lessen the coalescence induced noise by defining a new strategy which will decrease the

discrepancy in the particle weights. One way to achieve this is to perform the coalescence process all Nc

Fig. 6. Ion current intensity through the cathode.

Fig. 7. Charge density profile between the electrodes.
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time-steps (Nc denotes a number of time-steps where the coalescence is not performed) on every mesh el-

ement rather than coalescing every time-step on those elements where the number of particles is greater

than a given maximum number. This method can therefore be viewed as a global coalescence based on a

local procedure.

We apply this technique on the same test case as previously, with Nc ¼ 50. The total number of particles
in the computation domain varies from 7800 to 31,700. We obtained a potential curve identical to the one

obtained in Fig. 9, but the density profile and the current intensity (see Fig. 10) are now far less noisy than

before. Compared to the initial results without coalescence the remaining extra noise can now be assigned

to the lower total number of particles.

We now consider another test case intended to measure the effect of coalescence on the particle distri-

bution function. We use the same mesh as previously, and we approximate a Maxwellian distribution by

Fig. 9. Potential distribution with and without coalescence.

Fig. 8. Charge density profile (a) and ion current intensity (b) without coalescnece and with a reduced number of particles.
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injecting 250 particles per cell. We then perform coalescence in the whole domain with a 25-particle scheme,

that means with 25 particles in each cell after a coalescence step.

We present in Fig. 11(a) the initial distribution function, and in Fig. 11(b) the one obtained after coa-

lescing with the first energy conservation scheme, described in Section 7.1 (note that the scales are different).
We remark that this method introduces a bias corresponding to the particles used to correct the energy.

Figs. 12(a) and (b) show, respectively, the same initial distribution function and the one obtained after

coalescing with the second energy conservation scheme (see Section 7.2). Here, the coalescence does not

deteriorate the main characteristics of the distribution function.

For all the cases, the numerical relative precision obtained on a double precision machine (CRAY T90)

for the conservation of mass, momentum and energy is about 10�14 which corresponds to the round off

error.

Fig. 11. Velocity distribution function without coalescence (a) and after coalescing with the first energy conservation scheme (b).

Fig. 10. Charge density profile (a) and ion current intensity (b) with the new strategy.
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9. Conclusion

We have developed a process to construct schemes for coalescing or splitting particles in PIC codes.

Particular attention was paid on the conservation of the mesh and particle charge and current densities, and

also on the particle energy. Moreover, the number of particles after coalescence can be controlled by

choosing an appropriate quadrature formula. As an illustration, we presented numerical results obtained
with a 7-particle and a 25-particle schemes.

However, to take fully advantage of this method, there is still work ahead. Let us particularly mention

the extension of this coalescence process to quadrilaterals in the two-dimensional case, or to tetrahedra or

hexahedra in the three-dimensional one.

Moreover, as it has been shown by numerical results, the use of any coalescence scheme, because of the

reduction of the number of particles, can increase the numerical noise on some variables, even if for in-

stance the electromagnetic field distributions are very well preserved.

To overcome this difficulty, it can be worthwhile to define a new strategy of coalescence. As an example,
we have proposed in the last section a global approach based on a local procedure, that proved to be

efficient. More generally, even if the definition of a well-adapted strategy is case-dependant, it is very useful

to be able to a priori control the number of particles as in our method.

Finally it would also be interesting to try other types of interpolation functions, or other quadrature

formulae, such as Monte-Carlo methods, in order to continue the investigations about the conservation of

the distribution function.
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